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Abstract

Data were summarized from assessments of three computer-based problem solving decision
aids for equipment maintenance. All three were shown to increase accuracy and reduce errors
and time required to solve maintenance problems. Cost benefits were reported for one and
suggested net savings of about $20 million per year in F-16 avionics maintenance. These
assessments suggest that (1) a strong cost-effectiveness case can be made for these computer-
based aids, (2) their development and implementation should consider the full range of
options available for ensuring competent human performance, (3) both descriptive and pre-
scriptive approaches should be employed in their design, (4) they will benefit from capabilities
developed for intelligent tutoring systems, and (5) their absence from routine use despite their
demonstrated promise suggests that more effort is needed to ensure that the state of practice
advances along with the state of the art. # 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Problem solving is required when an individual or a group of individuals must
achieve a goal but are uncertain how to do so (Baker & Mayer, 1999; Mayer &
Wittrock, 1996). It requires ingenuity and creativity on the part of the problem sol-
vers to manipulate and transform the knowledge and skills they possess into paths
of action leading to the goal. Most ‘real-world’ problem solving is a multivariate and
complex activity steeped in uncertainty. It involves everything from household
budgeting to deploying military personnel.
Decision making is an integral and inevitable component of human problem sol-

ving. It is a critical component of the skills needed to ensure workforce readiness
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and viability in the global marketplace (O’Neil, 1999). Difficulty in making the
decisions needed to solve workplace problems is indicated by the frequency with
which we are confronted with too much data, too many options, and unknown
levels of risk. These matters have long been the object of systematic study by psy-
chologists both past and present (James, 1890/1950; Edwards & Fasolo, 2001).
Given the complexity of real world decision-making and the range, both descrip-

tive and prescriptive, of its theoretic underpinnings, it does not seem unreasonable
to seek assistance from technology. The value of these resources is presaged by early
studies of clinical and statistical predictions (Meehl, 1954). These studies were
intended to show what human (clinical) judgment would add to purely statistical
predictions of such outcomes as patient response to treatment or academic success.
As described by Dawes (1971), the statistical prediction ‘‘floor’’ turned out to be a
ceiling. In all 20 cases reviewed by Meehl, statistical predictions based on straight-for-
ward linear models turned out to be superior to the clinical judgments of human beings.
Meehl’s results might be taken to suggest that today we should seek to replace

human decision making with computer-based algorithmic procedures that capt-
ure human processes but apply them consistently. However, this approach may go
too far for at least three reasons. First, many decisions must be made in a dynamic
environment. By the time the environment and the decision process can be captured
within an algorithmic procedure, the need for the decision may have long passed.
Second, as described by Hastie (2001), it may be impossible to capture all the ele-
ments that should be included in a decision. Elements involving intuition, social
roles, identification of alternatives, payoff-probability interactions, utilities, uncer-
tainties, etc. are often too elusive to capture in anything like an algorithmic proce-
dure. And, third, most humans want to maintain control over their lives. They do not
want their lives to be run by machines. Other reasons may well occur to the reader.
On the other hand, most people are willing to accept (even pay for) assistance and

advice in making complicated decisions. The extent to which they are willing to do
this depends to a significant extent on both the decision to be made and the indivi-
dual(s) who must make it. Areas where a great many possibilities can be collected,
stored, and accessed by computer and then organized and presented to human
decision makers seem ripe for technology assistance. The value of doing so to aid
human decision making, problem solving, and, generally to augment human cogni-
tion is a topic of this article. An example of such augmentation used in life or death
decisions, is the clinical oncology decision aid.

1.1. Example: clinical oncology decision aid

A theoretically-based approach was used to develop the National Cancer Insti-
tute’s (NCI) Clinical Trial Decision Aid (Whiteis, McGovern, & Johnston, 2001).
The decision aid uses standard personal digital assistant (PDA) technology and
evolving heuristics for inclusion and exclusion to assist oncologists in determining a
patient’s eligibility to participate in melanoma and colorectal cancer clinical trials.
Before developing this decision aid, Mozelak, Glassman, and Johnston (2001)

performed a clinical oncology needs assessment with interviews, focus groups, and

718 J.D. Fletcher, R. Johnston /Computers in Human Behavior 18 (2002) 717–728



surveys. They found that 14% of all cancer patients are eligible for enrollment in
cancer clinical trials while only 2% are actually enrolled (National Cancer Institute
Office of Communication, 2000, personal communication). Further, they found that
there are hundreds of public and private clinical trials being performed nationally.
New clinical trials are frequently added and existing trials are dropped with equal
frequency. Each clinical trial has its own criteria for including and excluding
patients, and each is subject to continuing modification by regulatory bodies and
current research results. The situation makes enrollment heuristics hard to acquire
and apply.
Physicians indicated that using the Internet or journals to track clinical trials in

their field was an unmanageable solution that proved to be overly time-consuming
and confusing because of rapid changes in trial availability. They also indicated that
each trial had its own selection criteria leaving them to focus on one or two indivi-
dual trials, neglect others, and seek patients who fit the criteria for the specific trials
they selected. Mozelak et al. (2001) concluded that significant problems exist in
enrolling cancer patients for clinical trials because of the need to manage increasing
volumes of data and track the rapidly evolving inclusion and exclusion heuristics for
each trial.
By searching clinical trial inclusion and exclusion criteria, Mozelak et al. deter-

mined that one could create heuristics to fit each of the clinical trials. Physicians
could adjust the values of seven clinical variables, thereby reducing the number of
available clinical trial choices from more than 400 to an average of three matched
trials per patient. While the selection rules were not a perfect fit, they reduced the
number of trials for which any patient might hypothetically qualify to a manageable
number. In turn, the process increased the probability that individual patients might
qualify for a clinical trial because the physician no longer needed to screen them for
a limited number of trials but could identify for each patient all trials that were
appropriate and applicable.
The prototype was developed on a handheld PalmOS (TM) device that downloads

NCI melanoma and colorectal cancer clinical trial information each time a physician
connects the handheld device to the Internet. By combining formally developed
heuristics with a large source of data, the device acts as a decision aid covering many
clinical trials along with their descriptions, locations, points of contact, and inclu-
sion and exclusion criteria. The device is currently being tested against other clinical
datasets to verify its inclusion and exclusion heuristics.
Recently, 80% of one sample of oncologists reported using PDA-based decision

aids for this purpose (Mozelak et al., 2001). Many other applications are likely to be
developed, raising issues concerning their cost and effectiveness. Their value is indi-
cated by assessments of job-aiding devices performed by the military.

2. Military applications of technology-based decision aids

University research is primarily concerned with developing technical opportu-
nities, not assessing cost and effectiveness trade-offs. This orientation leads to an
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interest in effectiveness (Does it work?), but not necessarily to cost-effectiveness
(Should anyone buy it?). Consideration of both the effectiveness and costs of a
proposed innovation is essential for its transition from research laboratory to rou-
tine use (Fletcher, 1990). The primary business of business is not to advance the
state of the art but to seek proprietary advantage. This situation leaves the govern-
ment and particularly the military with an opportunity if not a responsibility to
enhance the state of the art and practice in decision aiding through assessment of
costs and effectiveness and open dissemination of findings.
Three system developments are notable in this regard. The first concerns the

Computer-Based Maintenance Aids System (CMAS) developed by the Air Force
Human Resources Directorate. The second concerns the Portable Electronic Aid for
Maintenance (PEAM) developed together by the Army Research Institute and the
Navy Personnel Research and Development Center. The third concerns the Inte-
grated Maintenance Information System (IMIS) developed by the Human Resour-
ces Directorate in the Air Force Armstrong Laboratory.

2.1. Example: Computer-based Maintenance Aids System (CMAS)

CMAS was a logical extension of efforts to develop maintenance decision aids that
could be traced at least to the 1960s with Air Force Project PIMO (Presentation of
Information for Maintenance and Operation) (Serendipity, 1969). PIMO used
paper-based task-specific job guides as decision aids for maintenance and was fol-
lowed by other paper-based decision aids such as Xyzyx Corporation’s Job Perfor-
mance Aids on cards (Inaba, 1988).
Paper-based decision aids were shown to be better than conventional technical

manuals in improving technician performance (e.g. Booher, 1978; Foley & Camm,
1972), but they shared and continue to share the usual drawbacks of paper-based
technical manuals in that they are expensive and inefficient to update, it is difficult to
design their presentations to match the differing needs of novice, journeymen, and
experienced technicians, they often make access to information difficult to find,
and they are heavy and cumbersome to store and use.
Computer technology early entered the scene with recipe conversion aids pre-

sented by the PLATO (Programmed Logic for Automatic Teaching Operations)
instructional system. Hurlock and Slough (1976) reported that the capability was
effective, but, given the state of computer technology at the time, too expensive and
too cumbersome for routine use. In 1977, this capability was extended by the Air
Force Computer-Based Maintenance Aid System (CMAS) project (Clay, 1986).
CMAS began the development of concepts for presenting maintenance aiding
information by computer and initiated a chain of developmental efforts continuing
into today’s Interactive Electronic Technical Manuals (IETMs) and the ‘mentoring’
(decision aiding) capabilities now incorporated in the Advanced Distributed Learn-
ing Initiative.
Nugent, Sander, Johnson, and Smillie (1987) compared the troubleshooting per-

formance of 36 technicians using technical manuals with technicians using electro-
nic presentation of an augmented CMAS data base to detect and isolate single
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component failures in a radio receiver-transmitter. Four problems were presented,
two to be solved using decision aiding presented by technical manuals and two to be
solved using the electronically presented decision aiding. Nugent et al. found that
technicians using CMAS compared to those using paper-based technical manuals
took less than half the time to find system faults (average of 24.4 min versus 56.5
min), checked more test points (average of 5.6 versus 3.6), made no false replace-
ments (versus an average of 1.2), and solved more problems (average of 2.0 versus
1.7). All their results were statistically significant.

2.2. Example: Portable Electronic Aid for Maintenance (PEAM)

PEAM followed DARPA (Defense Advanced Research Projects Agency) devel-
opment in the late 1970s of VIMAD (Voice Interactive Maintenance Aiding
Device), which was the first voice-controlled, wearable computer intended as a
maintenance decision aid. PEAM also was portable (briefcase-size) and used voice
interaction to allow hands-free access to textual and graphics maintenance infor-
mation needed by technicians. For a variety of reasons, the evaluations reported
here did not use voice interaction to any significant extent.
Evaluation of PEAM was a joint Service effort summarized by Wisher and

Kincaid (1989). It involved both Army and Navy technicians. The Army used
PEAM and, alternatively, a lap-top computer to provide PEAM-based main-
tenance decision aiding for M1 tank turrets. The Army used a between-subjects
evaluation with nine technicians assigned to the PEAM group and five technicians
assigned to a paper-based technical manual group. Both groups of technicians sol-
ved six troubleshooting tasks and 28 non-troubleshooting tasks—three adjust and
align tasks, two service maintenance tasks, 11 unit removal tasks, and 12 install/
replace tasks.
The Navy presented PEAM material using a workstation-size computer to pro-

vide PEAM-based maintenance decision aiding for the NATO SEASPARROW
missile. It used a within-subjects design with 28 technicians required to solve two
fault isolation (troubleshooting only) problems, one using technical manuals, and
one using PEAM simulation.
Wisher and Kincaid report substantial reductions in troubleshooting errors

for both the Army (average of 0.7 versus 3.4 errors) and Navy (average of 0.9 versus
5.7 errors) technicians for the PEAM applications. The Army study also observed
and reported reductions in errors among the PEAM technicians solving non-
troubleshooting problems (average of 0.4 versus 1.1 errors). All these differences are
of statistical significance as well as of practical significance in military operations.
Results concerning time to perform tasks were mixed, probably due, as Wisher

and Kincaid suggest, to the long time (in excess of 15 s) it took for graphics to
appear on the Army PEAM systems. As a consequence the Army technicians using
PEAM took longer to perform both troubleshooting (average of 41.6 versus 37.0
min) and non-troubleshooting (average of 16.1 versus 12.0 min) tasks, although
neither of these differences was statistically significant. On the other hand, using a
more powerful computer for PEAM permitted the Navy technicians to finish their
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troubleshooting tasks more quickly (average of 33.1 versus 43.9 min). This difference
is statistically significant.

2.3. Example: Integrated Maintenance Information System (IMIS)

Perhaps the best and most complete evidence on the value of technology-based
decision aiding is provided by assessments of the Integrated Maintenance Informa-
tion (IMIS). Tomasetti et al. (1993) documented a thorough cost analysis of IMIS,
Thomas later (1995) reported results from an empirical investigation of IMIS effec-
tiveness, and Teitelbaum and Orlansky (1996) summarized results from both these
studies, combined them into a more complete cost-effectiveness assessment, and
discussed the implications of these findings.
Thomas (1995) compared the performance of 12 Avionics Specialists and 12 Air-

plane General (APG) Technicians on 12 fault isolation problems concerning three
F-16 avionics subsystems—the fire control radar, heads-up display, and inertial
navigation system. Within each of the two groups of subjects, six of the fault isola-
tion problems were performed using paper-based Task Orders (Air Force technical
manuals) and six were performed using IMIS. Training for APG Technicians
includes all aspects of aircraft maintenance, only a small portion of which concerns
avionics. In contrast, Avionics Specialists must meet higher selection standards and
receive specialized training focused on avionics maintenance.
Results from these investigations may be summarized as the following:
(a) Avionics Specialists using Task Orders compared with those using IMIS. The

Avionics Specialists using IMIS found more correct solutions (100% versus an
average of 81.9%) in less time (average of 123.6 versus 149.3 min), used fewer parts
(average of 6.4 versus 8.7) to do so, and took less time (average of 1.2 versus 19.4
min) to order them. All these results were statistically significant.
The number of parts required and the time to order them may deserve brief com-

ment. Savings in spare parts inventory and transportation were by far the largest
factors in the Tomasetti et al. (1993) costs–benefits analysis. They exerted consider-
able leverage on the overall cost savings reported by Teitelbaum and Orlansky
(1996) for IMIS. The results concerning time to order parts are to be expected
because IMIS automates most of this process. These results are mentioned here
because they are large and because the time taken by technicians to complete
the paperwork in the absence of IMIS could be used elsewhere, with substantial
productivity gains and cost savings, if IMIS were performing these paperwork chores.
(b) APG Technicians using Task Orders compared with those using IMIS. Tho-

mas obtained similar results in these comparisons. The APG Technicians using
IMIS found more correct solutions (98.6% versus 69.4%) in less time (average of
124.0 versus 175.8 min), used fewer parts (average of 5.3 versus 8.3) to do so, and
took less time (average of 1.5 versus 25.3 min) to order them. As with the Avionics
Specialists, all these results were statistically significant.
(c) APG Technicians using IMIS compared with Avionics Specialists using Task

Orders. The APG Technicians using IMIS found more correct solutions (98.6%
versus 81.9%) in less time (average of 124.0 versus 149.3 min), used fewer parts to
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do so (5.3 versus 8.7), and took less time (1.5 versus 19.4 min) to order them than
did Avionics Specialists using paper-based Task Orders. All these results were sta-
tistically significant. This result suggests that it is feasible, and desirable to replace
some of the extra training required by specialists with on-the-job, just-in-time deci-
sion aids, such as IMIS, supplied to non-specialists.
(d) APG Technicians using IMIS compared with Avionics Specialists using IMIS.

In these comparisons, the APG Technicians performed just about as well as the
Avionics specialists (98.6% versus 100%), and even slightly better in the number of
parts used (5.3 versus 6.4). None of these comparisons were statistically significant
and none appear to be practically significant. These results again suggest the feasi-
bility of replacing some number of specialists with their greater training costs and
requirements with general technicians provided with on-the-job, just-in-time deci-
sion aids. They also suggest the desirability of doing so, because in this case the
training costs of the specialists are greater than those of the non-specialists even
though the resulting performance on the job, where it counts, is the same in both
cases.
The promise suggested by these results could well vanish if the costs to provide the

decision aid (IMIS) exceed the costs they otherwise save. Enter the costs and benefits
analysis by Tomasetti et al. (1993) combined with the empirical results reported by
Thomas (1995). By using these two sources of data, Teitelbaum and Orlansky (1996)
were able to estimate reductions in depot-level maintenance, organizational-level
maintenance, and maintenance and transportation of inventories of spare parts.
They arrived at an estimated annual savings from the use of IMIS of about $38
million for the full Air Force fleet of about 1700 F-16s. Teitelbaum and Orlansky
also considered the costs to develop and maintain IMIS. Assuming an 8-year useful
life for IMIS, they arrived at a figure of about $18 million per year to maintain IMIS
(including its databases) and to amortize its development costs. The result is a ben-
efit of about $20 million per year in net savings.
This figure of $20 million is conservative. It does not include such aspects as: (a)

savings in selection and training that would result from a reduction in Air Force
requirements to recruit and train specialized personnel such as the Avionics Specia-
lists in Thomas’ study; (b) savings in training that would accrue from the use of
IMIS as both a decision aid and a training device; (c) savings in the costs to print,
distribute, and, especially, update paper technical manuals; and (d) savings (of about
50%) in time to debrief pilots about maintenance problems. Most importantly these
benefits do not include those arising from increased sortie rates and unit operational
readiness and effectiveness resulting from the substantially improved problem sol-
ving competencies of maintenance personnel.

3. Discussion and conclusions

At least six observations may be made concerning the findings reported
above. First, the Oncology Aid, CMAS, PEAM, and IMIS are all aids in decision-
making and problem solving. Capabilities such as job performance aids, electronic
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performance support systems, technology-based ‘mentoring’, as well as those more
typically described as individual and group decision aids are all intended to match
user intentions and relevant data with decision heuristics that can advise users across
a full range of problem solving. Along with many other things, this range includes
the maintenance of devices and systems. Decision aiding in maintenance has yielded
useful evidence on effectiveness and cost returns that indicate the general value of
technology-based problem solving.
Second, the results discussed in this paper suggest that a strong cost-effectiveness

case might be made for the development and implementation of technology-based
decision aids across a variety of applications. More data of this sort would be nee-
ded for a conclusive case, but, as current findings suggest, so far, so good. What is
not clearly evident is how these technology-based capabilities should be best
designed. Current functional designs are based on best guesses. We have much yet to
learn about what functionalities should be included to insure that these technology-
based capabilities to serve as effective partners in human decision making and prob-
lem solving. To accomplish this end we need to know more about both the function-
alities we are able create and the human problem solving processes we mean to assist.
Third, a decision, for instance, to supply IMIS to all Air Force APG technicians

may be a good idea, but it should not be extended to wholesale replacement of all
avionics specialists and avionics specialist training with IMIS. It should be under-
taken with full consideration of all other components of Air Force efforts to ensure
the provision of human performance when and where it is needed.
More generally, aids for decision aiding and problem solving need to be treated as

components of a system intended to ensure the availability of human competence.
The object is not just effective decisions or problem solving alone, but an effective
organization. Resources to accomplish this end can be allocated to selection stan-
dards for people who are to solve the problems, structuring the tasks, jobs, and
careers to which they are assigned, training and education provided for them, and,
of course, the design and implementation of the decision aids they will use. All these
components interact. An investment (or lack thereof) in one affects all the others, as
well as the functioning of the organization as a whole. Determining these allocations
should be treated as part of the full system of human competence needed by the
organizational entity, be it a company, university, or governmental agency, i.e.
regardless of the economic sector in which it acts.
Fourth, as Edwards and Fasolo (2001) discuss, there are necessary roles for both

descriptive and prescriptive approaches in the design of decision aids. Prescriptive
theories help by explaining, often in quite formal terms that are amenable to algo-
rithmic procedures, how decisions should be made based on well-defined criteria and
optimized consideration of alternatives. Techniques like von Neumann and Mor-
genstern’s (1947) utility theory, Simon’s (1955) rational choice theory, and Kahne-
man and Tversky’s (1979) prospect theory are all applicable. Edwards and Fasolo
assembled current prescriptive techniques under three widely-used, general approa-
ches derived from multi-attribute utility measurement, Bayesian probability rules,
and maximization of subjectively expected utility, all of which can play a role in
good decision making.
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Descriptive apporaches, on the other hand, attempt to explain how people actu-
ally make decisions in ‘real life.’ These approaches often use case studies to under-
stand and explain decisions by explaining the actors, context of the decisions, and
intended outcomes in these cases. Examples of this second category include Allison’s
(1971) analysis of decision making in the Cuban missile crises and Wohlstetter’s
(1962) analysis of the surprise attack at Pearl Harbor. Such descriptive approaches
were used extensively in the design of the Oncology Aid.
An interesting synthesis of descriptive and prescriptive approaches is provided by

naturalistic decision-making (NDM) (e.g. Orasanu and Connolly, 1993; Klein,
2000). NDM combines elements of formal models with reason-based analysis, elici-
tation, and direct observation. Zsambok (1997) describes NDM as ‘‘[T]he way peo-
ple use their expertise to make decisions in field settings’’ (p. 4). It attempts to
capture and describe decision making by observing and interviewing individuals (as
in descriptive approaches) and abstracting from these cases more formal models
(as in prescriptive approaches), such as Klein’s Recognition-Primed Decision Model
(Klein, Calderwood, & Clinton-Cirocco, 1985) which categorizes decision-
making stages and strategies. A systematic effort to apply NDM to the maintenance
aiding applications discussed in this paper, may be an important next step in their
development.
Fifth, if we seek technologies that will participate as partners in human problem

solving, these technologies may need to understand the human side of the issue. To
some extent they may need to be ‘intelligent’. For instance, the primary need for
maintenance technicians (and other problem solvers) is not a capability that starts at
the beginning of a procedure and leads them through to the end—valuable as this
may be. More typically, maintenance technicians begin troubleshooting or a specific
procedure, encounter anomalies, and need help. In short they more typically need
help when they are ‘stuck’ in the middle of a procedure. What would help is a device
with the capability to engage in an decision aiding, mixed dialogue with either the
technician or the decision aid taking the initiative to ask questions, seek clarification,
access data bases, and suggest measurements and hypotheses. Much is made of
dialogue management in tutorial instruction (e.g. Graesser, Person, & Magliano,
1995). A capability for dialogue management in problem solving in general and
maintenance aiding in specific is needed and should be developed. This suggests a
collaboration between decision aiding communities and the intelligent tutoring
communities. Both communities should rise to the occasion.
Other ‘intelligence’ is required in technology-based problem solving and decision

aiding. As described by Fletcher (2002), among many others, this intelligence is
needed for comprehensive coverage of the decision space so that the actions sug-
gested are relevant and applicable. Intelligence is also needed to represent the user,
so that advice is given in a form that the user—at whatever level of knowledge,
intent, or ability—is capable of understanding and using. Finally, heuristics are
needed to infer solutions to the problem presented. These capabilities are to one
degree or another present in intelligent tutoring systems and decision aids. It is not a
great distance from Sherlock’s demonstrated intelligent avionics training capabilities
(Gott, Kane, & Lesgold, 1995) to avionics decision aiding. Again, the communities
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concerned with these developments would benefit from increased coordination and
communication.
Sixth, in contrast to the favorable findings reported in this paper, and the promise

of even more capabilities as technology-based decision aids are developed, it is
notable that only one of the devices, the Oncology Decision Aid, is currently in use.
CMAS, PEAM, and IMIS, as well as Sherlock, are all absent from daily practice.
The research and development community has assumed the responsibility to
advance the state of the art, and has been successful in fulfilling it. The com-
plementary responsibility to advance the state of practice in decision aiding and
problem solving through technology transfer and engineering in the field does not
appear to be receiving the attention it needs.

4. Final word

This brief summary presages an evolving and perhaps inevitable future in which
hand-held, or more likely wearable, personal technology-based learning and prob-
lem-solving assistants will be as common as wristwatches. They will be widely used
to augment human cognition and enhance human competency. In Norman’s (1993)
terms and as evidenced by the findings reported in the paper, we can build tools that
make us ‘smart’. We will communicate with them in natural language and they, in
turn, will communicate with the global grid to provide advice and information. How
well they articulate this advice and information back to the individuals using them
will depend to some extent on how well they understand each individual’s needs,
intentions, and capabilities. As suggested here and elsewhere, capabilities for indi-
vidualizing presentations and communications are evolving in a number of domains
such as human computer interaction, modeling and simulation, and intelligent
tutoring (Fletcher, 2002).
But how well they enhance human problem solving will also depend on how well

those who design and build these devices understand the processes we use to solve
problems. What is the optimal, the most effective division of labor between humans
and machines? Meehl’s (1954) ancient finding still stands—procedures that capture
our decision processes, but avoid human distractions and foibles, make better deci-
sions, at least in some domains, than we do. Results presented in this paper suggest
that we can indeed use technology to make us smart. Having learned that this is
possible, we now need to learn how it is best done. We need to progress from art to
engineering. As shown by other papers in this special issue, we are developing the
understanding we need. The results presented here suggest that efforts to do so will
be worthwhile.
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